Алюминиевые сплавы, сплавы на основе алюминия. Первые А. с. получены в 50-х гг. 19 в.; они представляли собой сплав алюминия с кремнием и характеризовались невысокими прочностью и коррозионной стойкостью. Длительной время Si считали вредной примесью в А. с. К 1907 в США получили развитие сплавы Al—Cu (литейные с 8% Cu и деформируемые с 4% Cu). В 1910 в Англии были предложены тройные сплавы Al—Cu—Mn в виде отливок, а двумя годами позднее — А. с. с 10—14% Zn и 2—3% Cu. Поворотным моментом в развитии А. с. явились работы А. Вильма (Германия) (1903—11), который обнаружил т. н. старение А. с. (см. Старение металлов), приводящее к резкому улучшению их свойств (главным образом прочностных). Этот улучшенный А. с. был назван дуралюмином. В СССР Ю. Г. Музалевским и С. М. Вороновым был разработан советский вариант дуралюмина — т. н. кольчугалюминий. В 1921 А. Пач (США) опубликовал метод модификации сплава Al—Si введением микроскопических доз Na, что привело к значительному улучшению свойств сплавов Al—Si и их широкому распространению. Исходя из механизма старения А. с., в последующие годы велись усиленные поиски химических соединений, способных упрочнить Al. Разрабатывались новые системы А. с.: коррозионностойкие, декоративные и электротехнические Al—Mg—Si; самые прочные Al—Mg—Si—Cu, Al—Zn—Mg и Al—Zn—Mg—Cu; наиболее жаропрочные Al—Cu—Mn и Al—Cu—Li; лёгкие и высокомодульные Al—Be—Mg и Al—Li—Mg (табл. 1).
Основные достоинства А. с.: малая плотность, высокая электро- и теплопроводность, коррозионная стойкость, высокая удельная прочность.
По способу производства изделий А. с. можно разделить на 2 основные группы: деформируемые (в т. ч. спечённые А. с.) для изготовления полуфабрикатов (листов, плит, профилей, труб, поковок, проволоки) путём деформации (прокатки, ковки и т. д.) и литейные — для фасонных отливок.
Основные достоинства А. с.: малая плотность, высокая электро- и теплопроводность, коррозионная стойкость, высокая удельная прочность.
По способу производства изделий А. с. можно разделить на 2 основные группы: деформируемые (в т. ч. спечённые А. с.) для изготовления полуфабрикатов (листов, плит, профилей, труб, поковок, проволоки) путём деформации (прокатки, ковки и т. д.) и литейные — для фасонных отливок.
Табл. 1. — Развитие систем алюминиевых сплавов
Система |
Упрочняющая фаза |
Год открытия упрочняющего эффекта |
Марка сплава (СССР) |
Al—Cu—Mg |
CuAl2, Al2CuMg |
1903-11 |
Д1, Д16, Д18, АК4-1, БД-17, Д19, М40, ВАД1 |
Al—Mg—Si |
Mg2Si |
1915-21 |
АД31, АД33, АВ (без Cu) |
Al—Mg—Si—Cu |
Mg2Si, Wфаза (Al2CuMgSi) |
1922 |
AB (с Cu), АК6, AK8 |
Al—Zn—Mg |
MgZn2, Тфаза (Al2Mg2Zn3) |
1923-24 |
B92, В48-4, 01915, 01911 |
Al—Zn—Mg—Cu |
MgZn2, Тфаза (Al2Mg2Zn3), Sфаза (Al2CuMg) |
1932 |
B95, В96, В93, В94 |
Al—Cu—Mn |
CuAl2, Al12Mg2Cu |
1938 |
Д20, 01201 |
Al—Be—Mg |
Mg2Al3 |
1945 |
Сплавы типа АБМ |
Al—Cu—Li |
Тфаза (Al7,5Cu4Li) |
1956 |
ВАД23 |
Al—Li—Mg |
Al2LiMg |
1963-65 |
01420 |
Деформируемые А. с. по объёму производства составляют около 80% (США, 1967). Полуфабрикаты получают из слитков простой формы — круглых, плоских, полых, — отливка которых вызывает относительно меньшие трудности. Химический состав деформируемых А. с. определяется главным образом необходимостью получения оптимального комплекса механических, физических, коррозионных свойств. Для них характерна структура твёрдого раствора с наибольшим содержанием эвтектики. Деформируемые А. с. принадлежат к различным группам.
Во всех сплавах в качестве примесей присутствуют Fe и Si; в ряд сплавов вводятся малые добавки Сг, Zr, Ti, Be. 2Полуфабрикаты: Л — лист; Пф — профиль; Пр — пруток; Пк — поковка; Ш — штамповка; Пв — проволока: Т — трубы; Пл — плиты; Пн — панели: Пс — полосы; Ф — фольга. 3Свойства получены по полуфабрикатам, показанным без скобок. 4С добавкой 1,8—1,3% Ni и 0,8—1,3% Fe. 5С добавкой 1,2—1,4% Li. 6С добавкой1,9—2,3% Li. 7С добавкой 0,2—0,4%Fe.
Двойные сплавы на основе системы Al—Mg (т. н. магналии) не упрочняются термической обработкой. Они имеют высокую коррозионную стойкость, хорошо свариваются; их широко используют при производстве морских и речных судов, ракет, гидросамолётов, сварных ёмкостей, трубопроводов, цистерн, ж.-д. вагонов, мостов, холодильников и т. д.
Сплавы Al—Mg—Si (т. н. авиали) сочетают хорошую коррозионную стойкость со сравнительно большим эффектом старения; анодная обработка позволяет получать красивые декоративные окраски этих сплавов.
Тройные Al—Zn—Mg сплавы имеют высокую прочность, хорошо свариваются, но при значительной концентрации Zn и Mg склонны к самопроизвольному коррозионному растрескиванию. Надёжны сплавы средней прочности и концентрации.
Четверные сплавы Al—Mg—Si—Cu сильно упрочняются в результате старения, но имеют пониженную (из-за Cu) коррозионную стойкость; из них изготовляют силовые узлы (детали), выдерживающие большие нагрузки. Четверные сплавы Al—Zn—Mg—Cu обладают самой высокой прочностью (до 750 Мн/м2 или до 75 кгс/мм2) и удовлетворительно сопротивляются коррозионному растрескиванию; они значительно более чувствительны к концентрации напряжений и повторным нагрузкам, чем дуралюмины (сплавы Al—Cu—Mg), разупрочняются при нагреве свыше 100°С. Наиболее прочные из них охрупчиваются при температурах жидкого кислорода и водорода. Эти сплавы широко используют в самолётных и ракетных конструкциях. Сплавы Al—Cu—Mn имеют среднюю прочность, но хорошо выдерживают воздействие высоких и низких температур, вплоть до температуры жидкого водорода. Сплавы Al—Cu—Li по прочности близки сплавам Al—Zn—Mg—Cu, но имеют меньшую плотность и больший модуль упругости; жаропрочны. Сплавы Al—Li—Mg при той же прочности, что и дуралюмины, имеют пониженную (на 11%) плотность и больший модуль упругости. Открытие и разработка сплавов Al—Li—Mg осуществлены в СССР. Сплавы Al—Be—Mg имеют высокую ударную прочность, очень высокий модуль упругости, свариваются, обладают хорошей коррозионной стойкостью, но их применение в конструкциях связано с рядом ограничений.