"У К Р Б А С"

тестовый информационный web-портал

Литейные алюминиевые сплавы

Литейные алюминиевые сплавы по объёму производства составляют около 20% (США, 1967). Для них особенно важны литейные характеристики — высокая жидкотекучесть, малая склонность к образованию усадочных и газовых пустот, трещин, раковин. А. А. Бочвар установил, что эти свойства улучшаются при сравнительно высоком содержании в сплаве легирующих элементов, образующих эвтектику, что приводит, однако, к некоторому повышению хрупкости сплавов. Важнейшие литейные А. с. содержат свыше 4,5% Si (т. н. силумины). Введение гомеопатических (сотые доли процента) доз Na позволяет модифицировать структуру доэвтектических и эвтектических силуминов: вместо грубых хрупких кристаллов Si появляются кристаллы сфероидальной формы и пластичность сплава существенно возрастает. Силумины (табл. 3) охватывают двойные сплавы системы Al—Si (АЛ2) и сплавы на основе более сложных систем: Al—Si—Mg (АЛ9), Al—Si—Си (АЛЗ, АЛ6); Al—Si—Mg—Си (АЛ5, АЛ10). Сплавы этой группы характеризуются хорошими литейными свойствами, сравнительно высокой коррозионной стойкостью, высокой плотностью (герметичностью), средней прочностью и применяются для сложных отливок. Для борьбы с газовой пористостью силуминов Бочвар и А. Г. Спасский разработали оригинальный и эффективный способ кристаллизации отливок под давлением.
К сплавам с высоким содержанием Mg (свыше 5% ) относятся двойные Al—Mg (АЛ8), сплавы системы Al—Mg—Si с добавкой Mn (АЛ13 и АЛ28), Be и Ti (АЛ22). Сплавы этой группы коррозионностойки, высокопрочны и обладают пониженной плотностью. Наиболее высокопрочен сплав АЛ8, но технология его изготовления сложна. Для уменьшения окисляемости в жидком состоянии в него вводится 0,05 — 0,07% Be, а для измельчения зерна — такое же количество Ti, в формовочную смесь для подавления реакции металла с влагой добавляется борная кислота. Сплав АЛ8 отливается главным образом в земляные формы. Сплавы АЛ13 и АЛ28 имеют лучшие литейные свойства, но меньшую прочность и не способны упрочняться термической обработкой; они отливаются в кокиль под давлением и в землю. Длительные низкотемпературные нагревы могут привести к ухудшению коррозионной стойкости литейных А. с. с высоким содержанием Mg.
 
Табл. 3.—Химический состав и механические свойства некоторых литейных алюминиевых сплавов (1Мн/м2 » 0, 1 кгс /мм2; 1 кгс/мм2 » 10 Мн/м2)

Марка сплава

Элементы (% по массе)

Вид литья1

Типичные механические свойства

Cu

Mg

Mn

Si

 

предел прочности sb, Мн/м2

предел текучести s0,2, MH/M2

относит. удлинение d, %

АЛ8

 

9,5-11,5

0,1

0,3

З, В, О

320

170

11,0

АЛ2

0,8

0,5

10-13

Все виды литья

200

110

3,0

АЛ9

0,2

0,2-0,4

0,5

6-8

» » »

230

130

7,0

АЛ4

0,3

0,17-0,3

0,25-0,5

8-10,5

» » »

260

200

4,0

АЛ5

1,0-1,5

0,35-0,6

0,5

4,5-5,5

» » »

240

180

1,0

АЛЗ

1,5-3,5

0,2-0,8

0,2-0,8

4,0-6,0

Все виды литья, кроме Д

230

170

1,0

АЛ25

1,5-3,0

0,8-1,2

0,3-0,6

11-13

К

200

180

0,5

АЛ30

0,8-1,5

0,8-1,3

0,2

11-13

К

200

180

0,7

АЛ7

4-5

0,03

1,2

230

150

5,0

АЛ1

3,75-4,5

1.25-1,75

0,7

Все виды литья, кроме Д

260

220

0,5

АЛ19

4,5-5,3

20,05

0,6-1,0

0,3

З, О, В

370

260

5,0

АЛ242

0,2

1,5-2,0

0,2-0,5

0,3

З, О, В

290

3,0

Примечание. 1Виды литья: З — в землю; В — по выплавляемым моделям; О — в оболочковые формы; К —в кокиль; Д — под давлением. 2Zn 3,5 — 4,5%.
 
         Сплавы с высоким содержанием Zn (свыше 3%) систем Al—Si—Zn (АЛ11) и Al—Zn—Mg—Cu (АЛ24) имеют повышенную плотность и пониженную коррозионную стойкость, но обладают хорошими литейными свойствами и могут применяться без термической обработки. Широкого распространения они не получили.
         Сплавы с высоким содержанием Cu (свыше 4% ) — двойные сплавы Al—Сu (АЛ7) и сплавы тройной системы Al—Cu—Mn с добавкой Ti (АЛ19) по жаропрочности превосходят сплавы первых трёх групп, но имеют несколько пониженные коррозионную стойкость, литейные свойства и герметичность.
Сплавы системы Al—Cu—Mg—Ni и Al—Cu—Mg—Mn—Ni (АЛ1, АЛ21) отличаются высокой жаропрочностью, но плохо обрабатываются.
Свойства литейных сплавов существенно меняются в зависимости от способа литья; они тем выше, чем больше скорость кристаллизации и питание кристаллизующегося слоя. Как правило, наиболее высокие характеристики достигаются при кокильном литье. Свойства отдельно отлитых образцов могут на 25—40% превосходить свойства кристаллизовавшихся наиболее медленно или плохо питаемых частей отливки. Некоторые элементы, являющиеся легирующими для одних сплавов, оказывают вредное влияние на другие. Кремний снижает прочность сплавов систем Al—Mg и ухудшает механические свойства сплавов систем Al—Si и Al—Cu. Олово и свинец даже в десятых долях процента значительно понижают температуру начала плавления сплавов. Вредное влияние на силумины оказывает железо, вызывающее образование хрупкой эвтектики Al—Si—Fe, кристаллизующейся в виде пластин. Содержание железа регулируется в зависимости от способа литья: оно максимально при литье под давлением и в кокиль и сильно снижено при литье в землю. Уменьшением вредных металлических и неметаллических примесей в сплавах с применением чистой шихты и рафинирования, введением малых добавок Ti, Zr, Be, модифицированием сплавов и их термической обработкой можно существенно повысить свойства фасонных отливок из А. с. Рафинирование осуществляется: продувкой газом (хлором, азотом, аргоном); воздействием флюсов, содержащих хлористые и фтористые соли; выдерживанием в вакууме или сочетанием этих способов.
          С каждым годом увеличивается объём потребления А. с. в различных отраслях техники (табл. 4). За 5 лет применение А. с. в США увеличилось примерно в 1,6 раза и превышает (1967) по объёму 10% от потребления стали (в СССР за 1966—70 намечено увеличение производства А. с. более чем в 2 раза). Наряду с транспортом (авиация, суда, вагоны, автомобили) А. с. находят огромное применение в строительстве — оконные рамы, стенные панели и подвесные потолки, обои; бурно расширяется использование А. с. для производства контейнеров и др. упаковки, в электропромышленности (провода, кабели, обмотки электродвигателей и генераторов).
           Распределение потребления алюминиевых сплавов по отраслям промышленности в США:
Область применения:
Строительство;
Транспорт;
Предметы длительного потребления;
Эктропромышленность;
Машиностроение и приборостроение;
Контейнеры и упаковка.
          Большой интерес представляет распределение производства А. с. по различным видам полуфабрикатов:
Вид полуфабриката:
Листы и плиты;
Фольга;
Другие катаные полуфабрикаты;
Проволока;
Кабель;
Проволока и кабель с покрытием;
Прессованные полуфабрикаты;
Волочёные трубы;
Сварные трубы;
Порошки;
Поковки, штамповки;
Литьё в землю;
Литьё в кокиль;
Литьё под давлением.

 
Лит.:
Сваривающиеся алюминиевые сплавы. (Свойства и применение), Л., 1959; Добаткин В. И.,
Слитки алюминиевых сплавов, Свердловск, 1960: Фридляндер И. Н.,
Высокопрочные деформируемые алюминиевые сплавы, М., 1960; Колобнев И. Ф.,
Термическая обработка алюминиевых сплавов, М., 1961;
Строительные конструкции из алюминиевых сплавов. [Сб. ст.], М., 1962;
Алюминиевые сплавы, в. 1—6, М., 1963—69; Альтман М. Б., Лебедев А. А., Чухров М. В.,
Плавка и литье сплавов цветных металлов, М., 1963; Воронов С. М.,
Металловедение легких сплавов, М., 1965;
AltenpohI D., Aluminium und Aluminiumlegierungen, В. — [u. a.], 1965; L'Aluminium, éd. P. Barrand, R. Gadeau, t. 1—2, P., 1964; Aluminium, ed. R. Kent van Horn, v. 1—3, N. Y., 1967.

И. Н. Фридляндер.


 

Календарь новостей

«  Ноябрь 2024  »
ПнВтСрЧтПтСбВс
    123
45678910
11121314151617
18192021222324
252627282930

Текущие новости


Поиск по сайту

Loading

Цены и котировки

16.11.2024 08:41 Курсы основных мировых валют

"MetalTorg.Ru онлайн-информер"

Погода



Опрос

Какой алюминиевый сплав Вы считаете самым востребованным?
Всего ответов: 743


Яндекс цитирования Rambler's Top100